William Henry Perkin
William Henry Perkin was born on March 12, 1838, in London, England. As a boy, Perkin’s curiosity prompted early interests in the arts, sciences, photography, and engineering. But it was a chance stumbling upon a run-down, yet functional, laboratory in his late grandfather’s home that solidified the young man’s enthusiasm for chemistry.
As a student at the City of London School, Perkin became immersed in the study of chemistry.His talent and devotion to the subject were perceived by his teacher, Thomas Hall, who encouraged him to attend a series of lectures given by the eminent scientist Michael Faraday at the Royal Institution. Those speeches fired the young chemist’s enthusiasm further, and he later went on to attend the Royal College of Chemistry, which he succeeded in entering in 1853, at the age of 15.
At the time of Perkin’s enrolment, the Royal College of Chemistry was headed by the noted German chemist August Wilhelm Hofmann. Perkin’s scientific gifts soon caught Hofmann’s attention and, within two years, he became Hofmann’s youngest assistant. Not long after that, Perkin made the scientific breakthrough that would bring him both fame and fortune.
At the time, quinine was the only viable medical treatment for malaria. The drug is derived from the bark of the cinchona tree, native to South America, and by 1856 demand for the drug was surpassing the available supply. Thus, when Hofmann made some passing comments about the desirability of a synthetic substitute for quinine, it was unsurprising that his star pupil was moved to take up the challenge.
During his vacation in 1856, Perkin spent his time in the laboratory on the top floor of his family’s house. He was attempting to manufacture quinine from aniline, an inexpensive and readily available coal tar waste product. Despite his best efforts, however, he did not end up with quinine. Instead, he produced a mysterious dark sludge. Luckily, Perkin’s scientific training and nature prompted him to investigate the substance further. Incorporating potassium dichromate and alcohol into the aniline at various stages of the experimental process, he finally produced a deep purple solution. And, proving the truth of the famous scientist Louis Pasteur’s words ‘chance favours only the prepared mind’, Perkin saw the potential of his unexpected find.
Historically, textile dyes were made from such natural sources as plants and animal excretions. Some of these, such as the glandular mucus of snails, were difficult to obtain and outrageously expensive. Indeed, the purple colour extracted from a snail was once so costly that in society at the time only the rich could afford it. Further, natural dyes tended to be muddy in hue and fade quickly. It was against this backdrop that Perkin’s discovery was made.
Perkin quickly grasped that his purple solution could be used to colour fabric, thus making it the world’s first synthetic dye. Realising the importance of this breakthrough, he lost no time in patenting it. But perhaps the most fascinating of all Perkin’s reactions to his find was his nearly instant recognition that the new dye had commercial possibilities.
Perkin originally named his dye Tyrian Purple, but it later became commonly known as mauve (from the French for the plant used to make the colour violet). He asked advice of Scottish dye works owner Robert Pullar, who assured him that manufacturing the dye would be well worth it if the colour remained fast (i.e. would not fade) and the cost was relatively low. So, over the fierce objections of his mentor Hofmann, he left college to give birth to the modern chemical industry.
With the help of his father and brother, Perkin set up a factory not far from London. Utilising the cheap and plentiful coal tar that was an almost unlimited byproduct of London’s gas street lighting, the dye works began producing the world’s first synthetically dyed material in 1857. The company received a commercial boost from the Empress Eugenie of France, when she decided the new colour flattered her. Very soon, mauve was the necessary shade for all the fashionable ladies in that country.
Not to be outdone, England’s Queen Victoria also appeared in public wearing a mauve gown, thus making it all the rage in England as well. The dye was bold and fast, and the public clamoured for more. Perkin went back to the drawing board.
Although Perkin’s fame was achieved and fortune assured by his first discovery, the chemist continued his research. Among other dyes he developed and introduced were aniline red (1859) and aniline black (1863) and, in the late 1860s, Perkin’s green. It is important to note that Perkin’s synthetic dye discoveries had outcomes far beyond the merely decorative. The dyes also became vital to medical research in many ways. For instance, they were used to stain previously invisible microbes and bacteria, allowing researchers to identify such bacilli as tuberculosis, cholera, and anthrax. Artificial dyes continue to play a crucial role today. And, in what would have been particularly pleasing to Perkin, their current use is in the search for a vaccine against malaria.
Question (1)
Do the following statements agree with the information given in Reading Passage 1? In boxes 1-7 on your answer sheet, write:
TRUE if the statement agrees with the information
FALSE if the statement contradicts the information
NOT GIVEN if there is no information on this more than once.
1
Michael Faraday was the first person to recognize Perkin’s ability as a student of chemistry.
2
Michael Faraday suggested Perkin should enroll in the Royal College of Chemistry.
3
Perkin employed August Wilhelm Hofmann as his assistant.
4
Perkin was still young when he made the discovery that made him rich and famous.
5
The trees from which quinine is derived grow only in South America.
6
Perkin hoped to manufacture a drug from a coal tar waste product.
7
Perkin was inspired by the discoveries of the famous scientist Louis Pasteur.
Questions 8 - 13
Answer the questions below. Choose NO MORE THAN TWO WORDS from the passage for each answer
Write your answers in boxes 8-13 on your answer sheet.
Before Perkin’s discovery, with what group in society was the colour purple associated? 8 What potential did Perkin immediately understand that his new dye had? 9 What was the name finally used to refer to the first color Perkin invented? 10 What was the name of the person Perkin consulted before setting up his own dye works? 11 In what country did Perkins newly invented colour first become fashionable? 12 According to the passage, which disease is now being targeted by researchers using synthetic dyes?
13
|
Questions 14 - 17
Reading Passage 2 has five paragraphs, A-E. Choose the correct heading for paragraphs B-E from the headings below.
Write the correct number: i-vii, in boxes 14—17 on your answer sheet.
List of Headings
i. Seeking the transmission of radio signals from planets
ii. Appropriate responses to signals from other civilizations
iii. Vast distances to Earth’s closest neighbors
iv. Assumptions underlying the search for extra-terrestrial intelligence
v. Reasons for the search for extra-terrestrial intelligence
vi. Knowledge of extra-terrestrial life forms
vii. Likelihood of life on other planets
Example Answer
Paragraph A v
Paragraph B 14 Paragraph C 15 Paragraph D 16 Paragraph E
17
|
Questions 18 - 20
Questions 18-20
Answer the Questions Below. Choose NO MORE THAN TWO WORDS from the passage for each answer
Write your answers in boxes 18-20 on your answer sheet.
What is the life expectancy of Earth? 18 What kind of signals from other intelligent civilizations are SETI scientists searching for? 19 How many stars are the world’s most powerful radio telescopes searching?
20
|
Question (21)
Questions 21-26
Do the following statements agree with the views of the writer in Reading Passage 2? In boxes 21-26 on your answer sheet, write
TRUE if the statement agrees with the information
FALSE if the statement contradicts the information
NOT GIVEN if there is no information on this more than once.
21
Alien civilizations may be able to help the human race to overcome serious problems.
22
SETI scientists are trying to find a life form that resembles humans in many ways.
23
The Americans and Australians have co-operated on joint research projects.
24
So far SETI scientists have picked up radio signals from several stars.
25
The NASA project attracted criticism from some members of Congress.
26
If a signal from outer space is received, it will be important to respond promptly.
Questions 27 - 30
Questions 27-30
Answer the questions below. Choose NO MORE THAN TWO WORDS from the passage for each answer
What had to transfer from sea to land before any animals could migrate? 27 Which TWO processes are mentioned as those in which animals had to make big changes as they moved onto land? 28 Which physical feature. possessed by their ancestors, do whales lack? 29 Which animals might ichthyosaurs have resembled?
30
|
Question (31)
Questions 31-33
Do the following statements agree with the information given in Reading Passage 3? In boxes 31-33 on your answer sheet, write
TRUE if the statement agrees with the information
FALSE if the statement contradicts the information
NOT GIVEN if there is no information on this more than once.
31
Turtles were among the first group of animals to migrate back to the sea.
32
It is always difficult to determine where an animal lived when its fossilized remains are incomplete.
33
It is always difficult to determine where an animal lived when its fossilized remains are incomplete.
Questions 34 - 39
Complete the flow-chart below. Choose NO MORE THAN TWO WORDS AND/OR A NUMBER from the passage. Write your answers in boxes 34-39 on your answer sheet.
Method of determining where the ancestors of turtles and tortoises come from
Step 1: 71 species of living turtles and tortoises were examined and a total of (34) …………….were taken from the bones of their forelimbs. 34 Step 2: The data was recorded on a (35) ………………. (necessary for comparing the information). 35 Outcome: Land tortoises were represented by a dense (36) ……………… of points towards the top. Sea turtles were grouped together in the bottom part. 36 Step 3: The same data was collected from some living (37) ……………… species and added to the other result. 37 Outcome: The points for these species turned out to be positioned about (38) ……………… up the triangle between the land tortoises and the sea turtles. 38 Step 4: Bones of R quenstedti and P talampayensis were examined in a similar way and the results added. Outcome: The position of the points indicated that both these ancient creatures were (39)………………….
39
|
Question (40)
Question 40
Choose the correct letter A, B, C or D. Write the correct letter in box 40 on your answer sheet.
40
According to the writer, the most significant thing about tortoises is that(A) they are able to adapt to life in extremely dry environments.
(B) their original life form was a kind of primeval bacteria,(C) they have so much in common with sea turtles.(D ) they have made the transition from sea to land more than once.